Trilinear and found wanting

Steven Galbraith + Benjamin Smith
ANTS XIII, Madison, Wisconsin // July 19, 2018

University of Auckland, New Zealand
Inria + Laboratoire d’Informatique de l’École polytechnique (LIX), France
Multilinear maps:

\[e : \mathbb{G}_1 \times \mathbb{G}_2 \times \cdots \times \mathbb{G}_n \longrightarrow \mathbb{G}_T \]

\[e(a_1 P_1, a_2 P_2, \ldots, a_n P_n) = e(P_1, P_2, \ldots, P_n)^{a_1 a_2 \cdots a_n} \]

The case \(n = 2 \): pairings.

Secure multilinear maps with \(n > 2 \) are a near-mythical cryptographic silver bullet.

Basic ingredients: an abelian variety A/\mathbb{F}_q equipped with many explicit endomorphisms, and a pairing η_r on $A[r]$.

$$e : \mathbb{G}_1 \times \mathbb{G}_2 \times \mathbb{G}_3 \longrightarrow \mathbb{G}_T$$

where $\mathbb{G}_1 = \langle P \rangle \subset A[r]$, $\mathbb{G}_2 = \langle Q \rangle \subset A[r]$, and

$$\mathbb{G}_3 = \mathbb{Z} + U_{P,Q} \subset \text{End}(A)$$

where $\eta_r(P, Q) \neq 1$ and $U_{P,Q}$ is a set of “noise”:

$$U_{P,Q} \subseteq \{ \xi \in \text{End}(A) : \eta_r(P, \xi(Q)) = 1 \}.$$

The trilinear map:

$$e : (aP, bQ, \psi = c + \xi) \mapsto \eta_r(aP, \psi(bQ)) = \eta_r(P, Q)^{abc}.$$
Attacking the third group

The trilinear map:

\[
e : (aP, bQ, \psi = [c] + \xi) \mapsto \eta_r(aP, \psi(bQ)) = \eta_r(P, Q)^{abc}.
\]

We can assume \(\eta_r, G_1 = \langle P \rangle, G_2 = \langle Q \rangle,\) and \(G_T = \mu_r\) are secure. We need to **attack the new group**, \(G_3\).

Public keys in \(G_3\) are \(\psi = [c] + x_1\xi_1 + \cdots + x_s\xi_s\), where

- \(c\) is the secret key, an exponent in \(\mathbb{Z}/r\mathbb{Z}\)
- \(x_1, \ldots, x_s\) are randomly sampled from \(\mathbb{Z}/r\mathbb{Z}\) (noise)
- \(1, \xi_1, \ldots, \xi_s\) is a (public) basis for a subring of \(\text{End}(A)\)

Attack: recover \(c\), or even the whole vector \((c, x_1, \ldots, x_s)\).
Identifying endomorphisms

We have a pairing \(\text{End}(A) \times \text{End}(A) \to \mathbb{Z} \) defined by

\[
\langle \psi_1, \psi_2 \rangle := \text{Tr}(\psi_1 \circ \psi_2^\dagger),
\]

where \(\psi \leftrightarrow \psi^\dagger \) is the Rosati involution.

Attack: Given the public basis \((\xi_0 = 1, \xi_1, \ldots, \xi_s) \) and a public key \(\psi = c + x_1\xi_1 + \cdots + x_s\xi_s, \)

1. (Pre)compute \(M = (m_{ij}) = (\langle \xi_i, \xi_j \rangle) \) for \(0 \leq i, j \leq s; \)
2. Compute \(v = (v_i) = (\langle \psi, \xi_i \rangle) \) for \(0 \leq i \leq s; \)
3. Solve for \((c, x_1, \ldots, x_s) = vM^{-1} \) (over \(\mathbb{Z}/r\mathbb{Z} \)).
Let \mathcal{E} be a supersingular elliptic curve, with $\text{End}(\mathcal{E}) \supseteq \mathbb{Z}\langle i, j, k \rangle$ where $i^2 = -a$, $j^2 = -b$, $k^2 = ab$. Suppose $(\xi_1, \xi_2, \xi_3) = (i, j, k)$.

Endomorphism pairing:

$$\langle \alpha, \beta \rangle = \text{Tr}(\alpha \beta^\dagger) = \alpha \beta^\dagger + \beta \alpha^\dagger$$

where $(t + xi + yj + zk)^\dagger = t - (xi + yj + zk)$.

Given $\psi = [c] + x_1 i + x_2 j + x_3 k$, we have

$$\langle \psi, 1 \rangle = (c + x_1 i + x_2 j + x_3 k) + (c - x_1 i - x_2 j - x_3 k) = 2 \cdot c$$

$$\langle \psi, i \rangle = (c + x_1 i + x_2 j + x_3 k)(-i) + i(c - x_1 i - x_2 j - x_3 k) = 2a \cdot x_1$$

$$\langle \psi, j \rangle = (c + x_1 i + x_2 j + x_3 k)(-j) + j(c - x_1 i - x_2 j - x_3 k) = 2b \cdot x_2$$

$$\langle \psi, k \rangle = (c + x_1 i + x_2 j + x_3 k)(-k) + k(c - x_1 i - x_2 j - x_3 k) = -2ab \cdot x_3$$
How do you compute the endomorphism pairing $\langle \cdot, \cdot \rangle$?

Classical solution (see e.g. Mumford): intersection theory.

- If endomorphisms are presented using divisors/bundles on A, then use intersection theory on those divisors.
How do you compute the endomorphism pairing $\langle \cdot, \cdot \rangle$?

Classical solution (see e.g. Mumford): intersection theory.

- If endomorphisms are presented using divisors/bundles on A, then use intersection theory on those divisors.
- If endomorphisms are presented as rational maps, then use intersection theory on the graphs.
Computing the endomorphism pairing

How do you compute the endomorphism pairing $\langle \cdot, \cdot \rangle$?

Classical solution (see e.g. Mumford): intersection theory.

- If endomorphisms are presented using divisors/bundles on A, then use intersection theory on those divisors.
- If endomorphisms are presented as rational maps, then use intersection theory on the graphs.
- If $A = J_C$ and endomorphisms are correspondences on $C \times C$, then use intersection theory on correspondences (see e.g. S’s thesis).
Computing the endomorphism pairing

How do you compute the endomorphism pairing \(\langle \cdot, \cdot \rangle \)?

Classical solution (see e.g. Mumford): intersection theory.

- If endomorphisms are presented using divisors/bundles on \(A \), then use intersection theory on those divisors.
- If endomorphisms are presented as rational maps, then use intersection theory on the graphs.
- If \(A = J_C \) and endomorphisms are correspondences on \(C \times C \), then use intersection theory on correspondences (see e.g. S’s thesis).
- In some situations, one could compute the matrices of \(\psi_1 \circ \psi_2^\dagger \) on low-degree torsion subgroups \(A[\ell] \), and CRT the traces of these matrices.
The moral of the story

If you can compute efficiently with elements of \mathbb{G}_3, then you can compute the pairing $\langle \cdot, \cdot \rangle$ on \mathbb{G}_3.

So: if you can efficiently compute the trilinear map, then you can efficiently break its \mathbb{G}_3.